Using DPDK APIs as the I/F
Between UPF-C and UPF-U



5G System Architecture

@ DATA PLANE DEVELOPMENT KIT

® UPF is a 5G architecture
data plane element

®* Replaces the user plane
of SGW and PGW

® Control and User Plane
Separation (CUPS)
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Accelerating UPF In 5G

@ DATA PLANE DEVELOPMENT KIT

Many operators are now
moving UPF to the edge

Optimal UPF at aggregation
locations

Used for local breakout

Partial/complete data plane
offloading over FPGA-based
SmartNICs

Programmable
Scalable

Open APls
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*SMF — Session Management Function

UE *UPF — User Plane Function
*PFCP - Packet Forwarding Control Protocol




Packet Processing Flow in UPF /@) DPDK
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PDR — Packet Detection Rule
FAR — Forwarding Action Rule
QER - QoS Enforcement Rule
URR — Usage Reporting Rule
BAR — Buffering Action Rule



Separation of UPF to UPF-C and UPF-U @ DPDK
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Partial Offload

@ DATA PLANE DEVELOPMENT KIT
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Full Offload —) DPDK
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FPGA SmartNIC Accelerates UPF Features /@) DPDK

S-GW/UPF P-GW/UPF ACL Filters

UPF-U features offloaded by SmartNIC
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SmartNIC Forwarding Engine



/F Between UPF-C and UPF-U ) DPDK
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Options for UPF-C to UPE-U I/F )

DPDK

DATA PLANE DEVELOPMENT KIT

Control Plane Messages
Send in-band control packets between UPF-C and UPF-U
Option 1: dedicated control packets for this purpose, new standard
Option 2: use an existing SDN I/F (for example, OpenFlow, P4 & P4 run-time)

Use DPDK HW offload APIs
Use existing DPDK methods for HW offload



=) DPDK
Control Plane Messages @

In-band
Approach
N4 ! PFCP
VM/container #m UPF-C
]
mr—, UPF
]
x86 ]
\Server !
Access ' N3 GTP IP~ Né | Data
N k
Network  555/40G6/100G 25G/40G/100G ' cOr
SmartNIC

11

ETHERNIT N

WORKS




Dedicated Control Plane Messages 2 DPDK

® Benefit: good performance

Control packets consume a small portion of the large data plane packets
® Dedicated Control Plane Messages
Need to define a spec for control plane message content for all UPF-U features
Need to implement a specific design in both UPF-C and UPF-U
Need to update the spec and implementation for new UPF-U features
Need to address error reporting and retransmission
® Existing SDN I/F
Need to adapt existing I/F to cover all UPF features not easily covered by existing SDN protocols

For example: cover policies, billing reports, etc.
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Using DPDK HW Offload APIs 2 DPDK

Suggested
Approach
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DPDK-Based APIs for UPF-C to UPF-U @ DPDK

®* Most UPF applications are already implemented in DPDK
For example, 5G UPF based on VPP: https://github.com/travelping/vpp

rte_flow is the natural choice for DPDK applications
UPF is flow based, maps nicely to DPDK rte_flow offload APIs (generic flow API)
® Avoids vendor lock-in
Supported by a large variety of vendors
Becoming a de-facto standard
® Futureproof: maintained and enhanced by the DPDK community
® Provides methods for handling flow validation
® Flexible enough to cover almost all UPF-U features
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https://github.com/travelping/vpp

DPDK

SUGGESTED

DPDK rte flow IMPROVEMENTS REQUIRED

FOR UPF OFFLOAD




Improve DPDK rte_flow APIs Performance @ DPDK

- UPF requires a large number of flows (e.g., 1M flows)
- Need to improve the rte_flow configuration rate

- Add burst write configurations
- Batching of rte_flow entries and then committing the batch to the HW offload

- Use shared memory and DMA for flow data structures

- Provide pointers to complete rte_flow data structures
- This is required for delivering PM counters for a large number of rte_flows

- Create a single rte_flow template, then populate just a few variable
fields

- Avoids configuration of repeated fields in the same rte_flow template
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GTP Header —) DPDK

- GTP header match is already supported in rte_flow

- Need to add GTP-U encap/decap
- GTP-U header encapsulation and decapsulation rte_flow actions

- Very similar to other tunnel headers that are already supported:
VXLAN, NVGRE, MPLS and raw_encap/decap

- Should include optional support for 5GS GTP-U extension header
» The GTP-U Extension Header for 5GS is called "PDU Session Container"




GTP-U Extension Header for 5GS @ DPDK
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Figure 5.5.2.1-1: DL PDU SESSION INFORMATION (PDU Type 0) Format Figure 5.5.2.2-1: UL PDU SESSION INFORMATION (PDU Type 1) Format
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Summary /@) DPDK

UPF is the 5G element implementing user plane data path
UPF can be placed at the edge

There is a need for UPF HW offload

UPF can be split into UPF-C and UPF-U

Need to define an I/F between UPF-C and UPF-U

DPDK rte_flow APIs are a good option for implementing this I/F

Need to implement some enhancements in rte_flow for optimal support of UPF
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Thank You
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