Using DPDK APIs as the I/F
Between UPF-C and UPF-U

5G System Architecture

@ DATA PLANE DEVELOPMENT KIT

® UPF is a 5G architecture
data plane element

®* Replaces the user plane
of SGW and PGW

® Control and User Plane
Separation (CUPS)

NSSF NEF NRF

PCF

UDM

AF
ansz NnefT NnrfT Npch Nume T Naf

Nausfl Namfl

AUSF AMF

,é\ N2

Nsmfl

SME

SCP

N4

User Plane Function

UE (R)AN

User Equipment (Radio) Access Network

UPF |——N6—— DN

Data Network

Accelerating UPF In 5G

@ DATA PLANE DEVELOPMENT KIT

Many operators are now
moving UPF to the edge

Optimal UPF at aggregation
locations

Used for local breakout

Partial/complete data plane
offloading over FPGA-based
SmartNICs

Programmable
Scalable

Open APls

@)

Access

Endpoin Core
dpoints Edge
AMF
N1 N2 N11
N4
SMF
o PFCP
oo
N3 N6
UPF SmartNIC
(R)AN Acceleration 5 N y
- ata Networ
*SMF — Session Management Function

UE *UPF — User Plane Function
*PFCP - Packet Forwarding Control Protocol

Packet Processing Flow in UPF /@) DPDK

FDR
PFCP
PFCP session’s FDR
Packet In _up L ad T Packet Out
- (find PFCP (—w| matching PDR e —
session with PDR of the Apply Instructions set in the
a matching PFCP session = matching PDR
FOR.) with highest
precedence)

PDR — Packet Detection Rule
FAR — Forwarding Action Rule
QER - QoS Enforcement Rule
URR — Usage Reporting Rule
BAR — Buffering Action Rule

Separation of UPF to UPF-C and UPF-U @ DPDK

N4 ! PFCP

UPF-C

VM/container #m

x86
\Server
Access N3 GTP IP Né Data
N k
Network 55 /406/100G 25G/40G/100G | CWor

SmartNIC

ETHERNITY s

W O R

Partial Offload

@ DATA PLANE DEVELOPMENT KIT

Access
Network

ETHERNIT

WORKS

VM/container #m

25G/40G/100G

SmartNIC

PM Counters
Control
Packets

IP Né Data

Network
25G/40G/100G " C WO

Full Offload —) DPDK

UPF-C

VM/container #m

x86
\ Server

Access ‘ N3 GTP IP~ Né \ Data

Network 25G/40G/100G 25G/40G/100G Network
SmartNIC

ETHERNIT N

WORKS

FPGA SmartNIC Accelerates UPF Features /@) DPDK

S-GW/UPF P-GW/UPF ACL Filters

UPF-U features offloaded by SmartNIC

Packet routing forwarding

H-QoS Lawful
Profile Mgmifl """/t n

UPF-C

GTP termination (if needed)

Gating, redirection & traffic steering
QoS

Packet buffering

Packet duplication

ACL

Lawful interception

Network
P

PM counters collection for billing

YV V.V V V V V V V V

IPsec encryption & decryption (for N3IWF)

SmartNIC Forwarding Engine

/F Between UPF-C and UPF-U) DPDK

UPF-C

VM/container #m

x86
\ Server
Access N3 GTP IP~ Né Data
Network 25G/40G/100G 25G/40G/100G Network

SmartNIC

ETHERNIT

WORKS

Options for UPF-C to UPE-U I/F)

DPDK

DATA PLANE DEVELOPMENT KIT

Control Plane Messages
Send in-band control packets between UPF-C and UPF-U
Option 1: dedicated control packets for this purpose, new standard
Option 2: use an existing SDN I/F (for example, OpenFlow, P4 & P4 run-time)

Use DPDK HW offload APIs
Use existing DPDK methods for HW offload

=) DPDK
Control Plane Messages @

In-band
Approach
N4 ! PFCP
VM/container #m UPF-C
]
mr—, UPF
]
x86]
\Server !
Access ' N3 GTP IP~ Né | Data
N k
Network 555/40G6/100G 25G/40G/100G ' cOr
SmartNIC

11

ETHERNIT N

WORKS

Dedicated Control Plane Messages 2 DPDK

® Benefit: good performance

Control packets consume a small portion of the large data plane packets
® Dedicated Control Plane Messages
Need to define a spec for control plane message content for all UPF-U features
Need to implement a specific design in both UPF-C and UPF-U
Need to update the spec and implementation for new UPF-U features
Need to address error reporting and retransmission
® Existing SDN I/F
Need to adapt existing I/F to cover all UPF features not easily covered by existing SDN protocols

For example: cover policies, billing reports, etc.

o
ETHERNIT
NETWORKS
Iy —,—,—, e,

Using DPDK HW Offload APIs 2 DPDK

Suggested
Approach
DPDK flow APIs VM/container #m G9PF-C
rte_flow -
x86
\Server
Access W—M Data
Network 25G/40G/100G - e Nt
mar

13

ETHERNIT .

WORKS

DPDK-Based APIs for UPF-C to UPF-U @ DPDK

®* Most UPF applications are already implemented in DPDK
For example, 5G UPF based on VPP: https://github.com/travelping/vpp

rte_flow is the natural choice for DPDK applications
UPF is flow based, maps nicely to DPDK rte_flow offload APIs (generic flow API)
® Avoids vendor lock-in
Supported by a large variety of vendors
Becoming a de-facto standard
® Futureproof: maintained and enhanced by the DPDK community
® Provides methods for handling flow validation
® Flexible enough to cover almost all UPF-U features
ETHERNITY

WORKS
Iy —,—,—, e,

https://github.com/travelping/vpp

DPDK

SUGGESTED

DPDK rte flow IMPROVEMENTS REQUIRED

FOR UPF OFFLOAD

Improve DPDK rte_flow APIs Performance @ DPDK

- UPF requires a large number of flows (e.g., 1M flows)
- Need to improve the rte_flow configuration rate

- Add burst write configurations
- Batching of rte_flow entries and then committing the batch to the HW offload

- Use shared memory and DMA for flow data structures

- Provide pointers to complete rte_flow data structures
- This is required for delivering PM counters for a large number of rte_flows

- Create a single rte_flow template, then populate just a few variable
fields

- Avoids configuration of repeated fields in the same rte_flow template

o
ETHERNIT
NETWORKS
Iy —,—,—, e,

GTP Header —) DPDK

- GTP header match is already supported in rte_flow

- Need to add GTP-U encap/decap
- GTP-U header encapsulation and decapsulation rte_flow actions

- Very similar to other tunnel headers that are already supported:
VXLAN, NVGRE, MPLS and raw_encap/decap

- Should include optional support for 5GS GTP-U extension header
» The GTP-U Extension Header for 5GS is called "PDU Session Container"

GTP-U Extension Header for 5GS @ DPDK

Bits
Octets 8 7 6] 4 3 2 1
1 Oxn
2-(4n -1) PDU Session Container
4n Next Extension Header Type (NOTE)
Bits o =
93 Bits °z
7 6 5 4 3 2 1 0 L g g3
o o
7 §]] 4 3 2 1 0 e
PDU Type (=0) Spare 1
— PDU Type (=1) Spare 1
PPP RQ QoS Flow ldentifier 1
. QoS Flow Identifier 1
. Oor1 Spare
PPI Spare
Padding 0-3 Padding 0-3

Figure 5.5.2.1-1: DL PDU SESSION INFORMATION (PDU Type 0) Format Figure 5.5.2.2-1: UL PDU SESSION INFORMATION (PDU Type 1) Format

ETHERNITY

Summary /@) DPDK

UPF is the 5G element implementing user plane data path
UPF can be placed at the edge

There is a need for UPF HW offload

UPF can be split into UPF-C and UPF-U

Need to define an I/F between UPF-C and UPF-U

DPDK rte_flow APIs are a good option for implementing this I/F

Need to implement some enhancements in rte_flow for optimal support of UPF

o
ETHERNIT
NETWORKS
Iy —,—,—, e,

Thank You

mailto:barak@ethernitynet.com
mailto:briank@ethernitynet.com

