
x

Using DPDK APIs as the I/F

Between UPF-C and UPF-U
BARAK PERLMAN & BRIAN KLAFF

ETHERNITY NETWORKS

2

5G System Architecture

UE (R)AN UPF

AF

AMF SMF

PCF UDM

DNN6

NRFNEF

N3

N2 N4

AUSF

Nausf Namf Nsmf

NpcfNnrfNnef Nudm Naf

NSSF

Nnssf

N9

SCP

• UPF is a 5G architecture
data plane element

• Replaces the user plane
of SGW and PGW

• Control and User Plane
Separation (CUPS)

User Equipment

User Plane Function

(Radio) Access Network Data Network

3

• Many operators are now
moving UPF to the edge

• Optimal UPF at aggregation
locations

• Used for local breakout

• Partial/complete data plane
offloading over FPGA-based
SmartNICs

• Programmable

• Scalable

• Open APIs

Accelerating UPF in 5G

•SMF – Session Management Function

•UPF – User Plane Function

•PFCP – Packet Forwarding Control Protocol

(R)AN

UE

UPF

N3 N6

SMF

AMF

N4

N2N1 N11

Data Network

Endpoints
Access

Edge
Core

SmartNIC

Acceleration

UPF
UPF

PFCP

4

Packet Processing Flow in UPF

PDR – Packet Detection Rule

FAR – Forwarding Action Rule

QER – QoS Enforcement Rule

URR – Usage Reporting Rule

BAR – Buffering Action Rule

MAR – Multi-Access Rule

5

Separation of UPF to UPF-C and UPF-U

x86

Server

UPF-C

25G/40G/100G

GTP IP

SmartNIC

UPF-UAccess

Network

PCIe

SMF

N4 PFCP

Hypervisor

DPDK

N3 N6

VM/container #m

UPF

PM counters 25G/40G/100G

Data

Network

6

Partial Offload

x86

Server

UPF-C

25G/40G/100G

GTP IP

SmartNIC

UPF-U
Access

Network

PCIe

SMF

N4 PFCP

Hypervisor

DPDK

N3 N6

VM/container #m

UPF

PM Counters

Control

Packets

25G/40G/100G

Data

Network

7

Full Offload

x86

Server

UPF-C

25G/40G/100G

GTP IP

SmartNIC

UPF-U
Access

Network

PCIe

SMF

N4 PFCP

Hypervisor

DPDK

N3 N6

VM/container #m

UPF

PM counters
25G/40G/100G

Data

Network

8

FPGA SmartNIC Accelerates UPF Features

X86

Server

GTP IP
SmartNIC

FPGA

UPF-U

Access Network

PCIe

S-GW/UPF P-GW/UPF GW ACL Filters

H-QoS

Profile Mgmt
HandOver I/F DPI

Lawful

Interception

UPF-C

UPF-U features offloaded by SmartNIC

➢ Packet routing forwarding

➢ GTP termination (if needed)

➢ Gating, redirection & traffic steering

➢ QoS

➢ Packet buffering

➢ Packet duplication

➢ ACL

➢ Lawful interception

➢ PM counters collection for billing

➢ IPsec encryption & decryption (for N3IWF)

SmartNIC Forwarding Engine

9

I/F Between UPF-C and UPF-U

x86

Server

UPF-C

25G/40G/100G

GTP IP

SmartNIC

UPF-U
Access

Network

PCIe

SMF

N4 PFCP

Hypervisor

DPDK

N3 N6

VM/container #m

UPF

PM Counters

?

25G/40G/100G

Data

Network

10

Options for UPF-C to UPF-U I/F

• Control Plane Messages

• Send in-band control packets between UPF-C and UPF-U

• Option 1: dedicated control packets for this purpose, new standard

• Option 2: use an existing SDN I/F (for example, OpenFlow, P4 & P4 run-time)

• Use DPDK HW offload APIs

• Use existing DPDK methods for HW offload

11

Control Plane Messages

x86

Server

UPF-C

25G/40G/100G

GTP IP

SmartNIC

UPF-U

25G/40G/100G

Access

Network

Data

Network

PCIe

SMF

N4 PFCP

Hypervisor

DPDK

N3 N6

VM/container #m

UPF

PM Counters

In-band

Approach

12

• Benefit: good performance

• Control packets consume a small portion of the large data plane packets

• Dedicated Control Plane Messages

• Need to define a spec for control plane message content for all UPF-U features

• Need to implement a specific design in both UPF-C and UPF-U

• Need to update the spec and implementation for new UPF-U features

• Need to address error reporting and retransmission

• Existing SDN I/F

• Need to adapt existing I/F to cover all UPF features not easily covered by existing SDN protocols

• For example: cover policies, billing reports, etc.

Dedicated Control Plane Messages

13

Using DPDK HW Offload APIs

x86

Server

UPF-C

25G/40G/100G

GTP IP

SmartNIC

UPF-U
Access

Network

PCIe

SMF

N4 PFCP

Hypervisor

DPDK

N3 N6

VM/container #m

UPF

PM Counters

Suggested

Approach

DPDK flow APIs

rte_flow

25G/40G/100G

Data

Network

14

• Most UPF applications are already implemented in DPDK

• For example, 5G UPF based on VPP: https://github.com/travelping/vpp

• rte_flow is the natural choice for DPDK applications

• UPF is flow based, maps nicely to DPDK rte_flow offload APIs (generic flow API)

• Avoids vendor lock-in

• Supported by a large variety of vendors

• Becoming a de-facto standard

• Futureproof: maintained and enhanced by the DPDK community

• Provides methods for handling flow validation

• Flexible enough to cover almost all UPF-U features

DPDK-Based APIs for UPF-C to UPF-U

https://github.com/travelping/vpp

DPDK rte_flow
SUGGESTED

IMPROVEMENTS REQUIRED

FOR UPF OFFLOAD

16

Improve DPDK rte_flow APIs Performance

• UPF requires a large number of flows (e.g., 1M flows)

• Need to improve the rte_flow configuration rate

• Add burst write configurations

• Batching of rte_flow entries and then committing the batch to the HW offload

• Use shared memory and DMA for flow data structures

• Provide pointers to complete rte_flow data structures

• This is required for delivering PM counters for a large number of rte_flows

• Create a single rte_flow template, then populate just a few variable

fields

• Avoids configuration of repeated fields in the same rte_flow template

17

GTP Header

• GTP header match is already supported in rte_flow

• Need to add GTP-U encap/decap

• GTP-U header encapsulation and decapsulation rte_flow actions

• Very similar to other tunnel headers that are already supported:

VxLAN, NVGRE, MPLS and raw_encap/decap

• Should include optional support for 5GS GTP-U extension header

➢ The GTP-U Extension Header for 5GS is called "PDU Session Container"

18

GTP-U Extension Header for 5GS

19

Summary

• UPF is the 5G element implementing user plane data path

• UPF can be placed at the edge

• There is a need for UPF HW offload

• UPF can be split into UPF-C and UPF-U

• Need to define an I/F between UPF-C and UPF-U

• DPDK rte_flow APIs are a good option for implementing this I/F

• Need to implement some enhancements in rte_flow for optimal support of UPF

x

Thank You
BARAK PERLMAN, CTO BRIAN KLAFF, MARKETING DIRECTOR

BARAK@ETHERNITYNET.COM BRIANK@ETHERNITYNET.COM

mailto:barak@ethernitynet.com
mailto:briank@ethernitynet.com

