Enabling the Virtualized Edge with Smart NIC Data Acceleration
Making Truly Programmable Networks a Reality

Barak Perlman
CTO, Ethernity Networks
Agenda

✓ Introduction
✓ What is the Virtualized Edge?
✓ FPGA-Based SmartNIC Acceleration
✓ Ethernity Networks’ Solutions for the Virtualized Edge
✓ Q&A
Cloud-based Services Driving Data Growth

- Cloud-based services
 - Video, content delivery
 - Social media, messaging
 - Storage
 - Data Management
 - Big data processing
 - IoT services
- Rapidly growing network capacity
 - 5G/LTE,
 - Gigabit Broadband
 - Ethernet Services
- Services hosted in large and hyperscale data centers
- Virtualized infrastructure
 - Based on SDN and NFV
Many applications and services require processing close to the user
 – Low latency, high bandwidth, caching, localized services
 – Multi-access Edge Computing (MEC) is a key initiative

5G/LTE wireless
 – vRAN and Cloud RAN already being deployed carriers
 – The virtualized edge is built into the 5G architecture

Other applications
 – Broadband
 – Enterprise services
 – IoT Services
The Virtualized Network Edge

Wireless Edge
- vRAN
- RRH
- Virtual BBU

Residential Edge
- Virtual OLT

Edge Cloud
- Application Cache
- Virtual IoT Hub
- Virtual SecGW

Mobile Core
- Telco Cloud

Enterprise Edge
- Private Cloud

IoT Edge
- Virtual IoT Hub

Web Services
- Azure
- AWS
- Google

Virtual Cloud
- IoT Edge
- Mobile Core
- Enterprise Edge
- Private Cloud
Virtualized Edge

Operator survey: smart central offices to be in 85% of service provider networks this year

IHS Markit, Jan 2018

Remote Edge, Far Edge, Extreme Edge, Smart Edge, Distributed Cloud, Multi-Access Edge Computing (MEC), Central Office, Hub, Fog Computing, cRAN, vRAN
The Race to the Edge

Moving the cloud closer to the user

Lambda@Edge

Azure IoT Edge

Access Network

Virtualized Edge (vBNG, vEPC, vSecGW...)

Transport Network (Trusted/Untrusted)

Carrier Data Center

Cloud

Physical

Virtual

NFV @ edge

Smart phones

Businesses

Residential

Cloud

Amazon Cloud Front

Physical

Virtual

NFV @ edge

Smart phones

Businesses

Residential

Lambda@Edge

Amazon Cloud Front

Lambda@Edge

Amazon Cloud Front
Edge Related Open Source and Standardization Projects

- **openEDGECOMPUTING**
- **ETSI** (MEC)
- **CORD**
- **OPNFV**
- **StarlingX**
- **EDGE X FOUNDRY™**
- **AKRAINO EDGE STACK**
<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORD</td>
<td>Reference implementations in CO for residential, mobile, and enterprise use cases</td>
</tr>
<tr>
<td>OpenEdgeComputing</td>
<td>Any application is able to utilize the nearby edge computing services independent of the communication bearer, the edge node technology, and the edge operator</td>
</tr>
<tr>
<td>OPNFV Multi-Access Edge</td>
<td>Provide documentation, test, and scenario integration support for access hardware and VNFs for edge-deployment use cases</td>
</tr>
<tr>
<td>OPNFV Edge Cloud</td>
<td>Focused on design and development of reference platform of edge cloud in OPNFV. Scope includes NFVI, VIM, MANO</td>
</tr>
<tr>
<td>OPNFV vCentral Office</td>
<td>OPNFV PoC, similar to CORD, but using ODL, OCP, and OpenStack</td>
</tr>
<tr>
<td>StarlingX</td>
<td>Part of OpenStack, open source contributed by Wind River, specially for the edge</td>
</tr>
<tr>
<td>Akraino</td>
<td>Akraino Edge Stack, a Linux Foundation project in formation, AT&T contribution</td>
</tr>
<tr>
<td>EdgeXfoundry</td>
<td>IoT framework simplifying the process to design, develop, and deploy solutions</td>
</tr>
<tr>
<td>Multi-Access Edge Computing</td>
<td>ETSI ISG standardization effort, providing industry standards</td>
</tr>
</tbody>
</table>
Unique Needs at the Network Edge

Limited power and space

Many users and exponential growth in number of devices, especially as 5G approaches
More Challenges for Virtualizing the Edge

- Security
- Openness
- Futureproof
- Multiple applications per site
- Low latency
Accelerating Traffic, Mainly Video

- 3Mbps for SD video
- 10Mbps for HD video
- 25Mbps for 4K UHD video (Netflix recommendation)

Ericsson Mobility Report June 2018
Smart NIC Acceleration

• Smart NICs accelerate application performance
• Replacing standard NICs
 – Hyperscale data centers
 – Edge computing
• Multi-host CPU offload
 – Applications
 – Network functions
• FPGA or processor based
• I/O controller integrated or separate
SmartNIC – Accelerating SDN
Smart NICs
Networking and Security Acceleration Options

- Fully programmable
- Open
- Disaggregation

Fat pipes issue
Vendor lock-in
Scalability issue

Not programmable → Not a SmartNIC
FPGAs demonstrate the “... performance characteristics of an ASIC, but the programmability and reconfigurability inherent in a software solution like a SoC.”

“We stopped burning CPU cores to run the network datapath... Host cores show less than 1% utilization...” after implementing FPGA SmartNICs
FPGA-Based SmartNICs for the Virtualized Edge

- Scalability: millions of users/devices
- Low power and minimal space: less servers, lower CPU load
- Security: flow isolation
- Open: Intel and Xilinx, easily ported
- Future proof: HW updates at the pace of SW development
- Compact: multiple applications in a single server
- High performance: deterministic, low latency
Two Typical Offloading Options

II. VNF offload

- VNF #1
 - VM/Container #1

- VNF #2
 - VM/Container #2

- VNF #n
 - VM/Container #n

DPDK (with Carrier-class Networking Extensions)

vSwitch: OVS-DPDK, VPP or Tungsten Fabric vRouter

HyperVisor

X86 Server

SmartNIC #1

SmartNIC #n

agent

SR-IOV

SDN Controller
Just Released: ACE-NIC100 SmartNIC

PR: Ethernity Networks Releases the 100G ACE-NIC100 FPGA-based Smart NIC

• FH/HL
• Fully programmable, FPGA-based
• 10G, 25G, 40G, 100G ports
• PCIe Gen3 x16, DDR4 for packet buffering
• Complete networking IP for the edge: vCPE, vEPC, vBNG/vBRAS, vFW, SecGW, SD-WAN
• Carrier-class DPDK acceleration
Example: Accelerated vs. SW-Only vBNGs

- This analysis is based on Intel’s figures and Ethernity Networks’ tests.
- Assuming 3Mbps user rates and 8,300 users in the 50Gbps case. Higher user rates are significantly more challenging for server-only solutions.
- Not covered above, server-only consumes more real estate and has over 100microsec delay and large delay variation (EANTC and Nokia tests). Deterministic performances with less than 15microsec are assured by ACE-NIC HW acceleration.

ACE-NICs make vBNG realistic!
Example: Tap as a Service

- Flow-based tapping of flows to monitor/probe
- Flexible flow classification
- Can tap any flow (n-tuple)
- Programmable tunnels
- Millions of flows
Multi-Access Edge Computing (MEC)

- 1U server-based solution with HW acceleration
- Optimal for network edge deployment
- High performance, fully programmable, future-ready

VM/Container #1: vEPC
VM/Container #2: vBNG
VM/Container #3: vSecGW
VM/Container #4: SG-XHaul

ENET Flow Processor
FPGA
ACE-NIC100
ACE-NIC100
About Ethernity Networks

✓ Leading innovator of network processing technology and products
 ✓ Systems-on-Chip (SoCs) – IP licensing
 ✓ SmartNICs and innovative server-based network appliances

✓ Over 500,000 systems already deployed with Ethernity’s data processing technology, connecting over 100M end users

✓ Unique patented networking technology, FPGA-based

✓ Founded in 2004, public company traded on AIM of the London Stock Exchange

✓ HQ in Israel, sales offices in North America and Asia
Takeaways

✓ Virtualization is happening at the edge
✓ The virtualized edge has some unique requirements
✓ FPGA-based SmartNICs address the virtualized edge requirements
✓ Ethernity Networks has a full solution for the virtualized edge
Questions and Answers?

Moderator
Simon Stanley
Analyst at Large
Heavy Reading

Barak Perlman
CTO
Ethernity Networks
Thank you
For your attention

Barak Perlman
CTO
barak@ethernitynet.com

Making Truly Programmable Networks a Reality